

Data-Efficient Methods for Model Learning and Control in Robotics

Erik Derner

erik.derner@cvut.cz

Czech Institute of Informatics, Robotics, and Cybernetics Czech Technical University in Prague, Czech Republic

28 March 2022

Model Learning & Control Using Symbolic Regression

- Symbolic regression (SR) automatically finds accurate analytic models fitting measured data
- Genetic operators (mutation) are applied to tree-like structures representing the models to evolve them, gradually improving their accuracy
- *Informed sample selection* improves efficiency: only 24 data samples needed to learn a model allowing for accurate control of a mobile robot
- Formal constraints allow for incorporating prior knowledge about the physical system and evolving accurate & physically meaningful
- Decode ls., through bioght bioght bioght computing, 94, 106432. [Q1 journal]
- Derner, E., Kubalík, J., & Babuška, R. (2021). Selecting Informative Data Samples for Model Learning Through Symbolic Regression. *IEEE Access*, 9, 14148-14158. [Q1 journal]

-3.141592654-30-23.34719731-2.932153143-29-22.67195916-2.722713633-28-22.07798667-2.513274123-27-21.63117778-2.303834613-26-21.2992009

0.8

0.7

∃_{0.5}

0.4 0.3 0.2

0.1

0

Symbolic Regression – Motivation

- Data modeling approaches
 - Time-varying linear models
 - Gaussian processes
 - Deep neural networks
 - Local linear regression
- Drawbacks
 - Large number of parameters
 - Local nature of the approximator
 - Data-hungry
 - Black box
- Symbolic regression
 - Low number of parameters
 - Small data sets
 - Analytic expressions

Symbolic Regression (SR)

- Fitting models in the form of mathematical expressions to a set of discrete data points
- Model found by SR will be called analytic model in this talk

...

...

f = -15.42978401 + 2.42980826 * ((x1 - (x1 * -1.49416733 + x2 * 0.51196778 + 0.00000756)) + (sqrt(power((x1 - (x1 * -1.49416733 + x2 * 0.51196778 + 0.00000756)), 2) + 1) - 1) / 2) ...

...

Symbolic Regression Algorithms

- Finding models composed of several features ("trees")
 - Multiple Regression Genetic Programming [1]
 - Evolutionary Feature Synthesis [2]
 - Multi-Gene Genetic Programming [3]
 - Single Node Genetic Programming [4, 5]
- [1] I. Arnaldo et al.: Multiple regression genetic programming (2014)
- [2] I. Arnaldo et al.: Building predictive models via feature synthesis (2015)
- [3] M. Hinchliffe et al.: Modelling chemical process systems using a multi-gene genetic programming algorithm (1996)
- [4] D. Jackson: Single node genetic programming on problems with side effects (2012)
- [5] J. Kubalík et al.: An improved Single Node Genetic Programming for symbolic regression (2015)

Single Node Genetic Programming (SNGP)

- Graph-based GP technique
- Evolves a population organized as an ordered linear array of individuals, each representing a single program node
- Program node types
 - Terminals variables, constants
 - Functions
- Evolutionary process
 - SMUT successor mutation
 - Acceptance rule best fitness in the population has improved

Analytic Model Structure

- $M = \sum_{j=0}^{n_f} \alpha_j F_j(x_1, \dots, x_n)$
- $F_0 = 1$
- Linear combination of features
- Coefficients α_j can be calculated e.g. by least squares

[6] J. Kubalík et al.: Hybrid single node genetic programming for symbolic regression (2016)

Main SNGP Parameters

- Population size (e.g. 500 individuals)
- Number of epochs (e.g. 30 epochs)
- Epoch length (e.g. 1000 generations)
- Tail function set (e.g. Plus, Minus, Multiply, Sine, Cosine)
- Maximum number of features (e.g. 10 features)
- Maximum depth of tree-like expressions (e.g. 7 levels)

Model Identification – Outline

- Symbolic regression (SR)
 - Single Node Genetic Programming (SNGP)
 - Multi-Gene Genetic Programming (MGGP)
- Constructing models of the system using SR
 - State-space models
 - Input-output models (NARX, nonlinear autoregressive with exogenous input)
- Control using SR models
 - Reinforcement learning (RL) framework
- Data selection
 - Identification of informative samples from a large set collected in a long-term scenario

E. Derner, J. Kubalík, and R. Babuška. **Data-driven Construction of Symbolic Process Models for Reinforcement Learning.** In 2018 IEEE International Conference on Robotics and Automation (ICRA), 5105–5112, Brisbane, Australia.

E. Derner, J. Kubalík, and R. Babuška. **Reinforcement Learning with Symbolic Input–Output Models.** In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3004–3009, Madrid, Spain.

Reinforcement Learning (RL)

Goal:

Learn a control strategy (policy) so that the sum of rewards over time is maximal.

Reinforcement Learning (RL) – Theoretical Background

Nonlinear model

 $x_{k+1} = f(x_k, u_k)$

- x_k ... current state
- u_k ... current input
- x_{k+1} ... next state
- Reward function

 $r_{k+1} = \rho(x_k, u_k, x_{k+1})$

- Bellman equation (value function, V-function) $\hat{V}^*(x) = \max_{u \in \mathcal{U}} \left[\rho(x, \pi(x), f(x, u)) + \gamma \hat{V}^*(f(x, u)) \right]$
- Optimal action

$$u = \underset{u' \in U}{\operatorname{argmax}} \left[\rho(x, u', f(x, u')) + \gamma V(f(x, u')) \right]$$

• γ ... discount factor

Model-Based RL Scheme

- Control loop and data logging in the buffer run in real time
- Symbolic regression and value iteration are computed offline in a parallel process
- Sample-efficient methods to construct interpretable analytic model from data
- Application in self-learning control
- Limited amount of data available
- Exploration is costly (safety, wear)
- Inclusion of prior knowledge

Symbolic Regression for RL – State-Space Models

Model-Based RL with Symbolic Regression – Motivation

- RL agent optimizes its behavior by interacting with the environment
- The goal is to find an optimal policy maximizing the long-term cumulative reward
- RL can work in a completely model-free fashion
- The absence of a model requires a lot of interaction with the system, which is costly and many real systems cannot withstand it
- To speed up learning, we propose to use symbolic regression to find process models of unknown systems

Problem Statement

- SR is used to estimate the state-transition function of the system
- Given a set of training samples:
 - Multidimensional inputs
 - Known outputs
- Genetic programming is used to form a model composed of features represented as trees
- User-defined parameters of SR
 - Functions used in the inner nodes of the trees
 - Depth of the trees
 - Number of features

Experiments

- Simulated experiments to evaluate the method for different number of features and various sizes of training sets
 - Mobile robot
 - Inverted pendulum
- Accurate analytic models can be found even for small training sets
 - Only tens of samples
 - Generated using the Euler approximation of the physical process model
- Real-world experiments
 - Inverted pendulum lab setup
 - Analytic process models used within a RL controller to perform the swing-up task

Erik Derner: Data-Efficient Methods for Model Learning and Control in Robotics

Mobile Robot – Illustrative Example

Continuous-time dynamics

$$\begin{split} \dot{x}_{pos} &= v_f \cos(\phi), \\ \dot{y}_{pos} &= v_f \sin(\phi), \\ \dot{\phi} &= v_a \,. \end{split}$$

Discrete-time dynamics

 $\begin{aligned} x_{pos,k+1} &= x_{pos,k} + 0.05 \, v_{f,k} \cos(\phi), \\ y_{pos,k+1} &= y_{pos,k} + 0.05 \, v_{f,k} \sin(\phi), \\ \phi_{k+1} &= \phi_k + 0.05 \, v_{a,k}. \end{aligned}$

Euler approximation

$x_{pos} \dots$ pose x-coordinate

- $y_{pos} \dots$ pose y-coordinate
- $\phi \ldots$ pose angle
- v_f ... linear ("forward") velocity
- $v_a \dots$ angular velocity

Example of an analytic model found by SR

 $\hat{x}_{pos,k+1} = 1.0x_{pos,k} + 0.0499998879 v_{f,k} \cos(\phi_k)$ $\hat{y}_{pos,k+1} = 1.000000023 y_{pos,k} + 0.0500000056 v_{f,k} \sin(\phi_k) + 0.0000000191$

 $\hat{\phi}_{k+1} = 0.9999982931 \phi_k + 0.0500000536 v_{a,k} - 0.0000059844$

Real Inverted Pendulum System

$$\ddot{\alpha} = \frac{1}{J} \cdot \left(\frac{K}{R} u - mgl \sin(\alpha) - b\dot{\alpha} - \frac{K^2}{R} \dot{\alpha} - c \operatorname{sign}(\dot{\alpha}) \right)$$

 $J = 1.7937 \times 10^{-4} \text{ kg m}^2$ $K = 0.0536 \text{ N m A}^{-1}$ $R = 9.5 \Omega$ m = 0.055 kg $g = 9.81 \text{ m s}^{-2}$ l = 0.042 m $b = 1.94 \times 10^{-5} \text{ N m s rad}^{-1}$ $c = 8.5 \times 10^{-4} \text{ kg m}^2 \text{ s}^{-2}$

- α ... angle [rad] $\dot{\alpha}$... angular velocity [rad s⁻¹] $\ddot{\alpha}$... angular acceleration [rad s⁻²]
- $u \dots$ voltage [V] control input

Real Inverted Pendulum Swing-Up

- Under-actuated swing-up task (limited voltage, cannot swing up at once)
- Training data were collected while applying random input to the system

Real Inverted Pendulum Swing-Up

- Only 5 seconds of the random interaction with a sampling period $T_s = 0.05$ s is sufficient to find an analytic process model that can be used to perform the swing-up task successfully
- Data from several executions of the swing-up task were collected and used together with the initial data set to train the refined model, which shows even better performance

Experiment – Pendulum Swing-Up

Control task: Make the underactuated inverted pendulum point up.

Collection of training data: random input

Input–Output (NARX) Models

• Motivation: the whole state is often not measurable, needs to be approximated

Experiment – Hopping Robot

Spring length:

$$l = \sqrt{\Delta x^2 + \Delta y^2}$$

Foot:

$$\begin{split} \ddot{x}_{2} &= \frac{\kappa \Delta x}{m_{2}l} (L_{0} - l) - \frac{1}{m_{2}} b \dot{x}_{2} \\ \ddot{y}_{2} &= -g + \frac{\kappa \Delta y}{m_{2}l} (L_{0} - l) - \frac{1}{m_{2}} b \dot{y}_{2} \end{split}$$

 m_1, m_2 ... body and foot mass, connected by a spring

- κ ... variable spring constant
- $g \dots$ gravitational acceleration
- $L_0 \dots$ equilibrium spring length
- l ... actual spring length
- b ... damping coefficient

Simplification of the problem statement: $x_1, x_2 = 0 \dots$ x-coordinate is fixed

Control input *u*:

- $\kappa = \kappa' + u$
- κ^\prime ... nominal spring constant

Experiment – Hopping Robot

Control task: Keep the robot hopping.

Model Learning with Sample Selection – Motivation

- A robot collects a large amount of data during its long-term operation
- Only some data samples are informative
- The method iteratively adds samples, starting with a very small data set
- In every iteration, a set of models of the robot's dynamics is constructed
- The proposed sample selection method is based on the prediction error of the models from the previous iteration

Model Learning with Sample Selection – Algorithm

- Input: sample-selection method, *Buffer*, *TestSet*, n_0 , n_s , n_i , n_r
- $i \leftarrow 0$
- *TrainingSet* $\leftarrow S_{n_0}$ (first n_0 samples in *Buffer*)
- $\bullet Buffer \leftarrow Buffer \setminus S_{n_0}$

repeat

 $i \leftarrow i + 1$

for each state variable do

- run n_r instances of SR to construct models f_r
 - $f^* \leftarrow f_r$ with the lowest RMSE on *TestSet*
 - $S \leftarrow n_s$ samples from *Buffer*,

chosen by the sample-selection method

- $\bullet \qquad TrainingSet \leftarrow TrainingSet \cup S$
- $\blacksquare Buffer \leftarrow Buffer \setminus S$

end for

until $i = n_i$ or termination condition on model quality is met

Sample-Selection Methods

- Uninformed methods
 - Sequential new samples are added in the order in which they have been stored to the buffer
 - Random new samples are selected from the buffer randomly
- Informed methods
 - Maximum variance a set of models is generated and the outputs of these models are calculated for all buffer samples; the sample with the highest variance in model output is added to the training set
 - Maximum output domain coverage new samples are added from the buffer to cover the output domain as well as possible
 - Maximum prediction error (PERMIT) a set of models is generated and the outputs of these models are calculated for all buffer samples; the sample with the highest average error is added to the training set

Experiments – Mobile Robot

• Continuous-time dynamics:

$$\begin{split} \dot{x}_{pos} &= v_f \cos(\phi), \\ \dot{y}_{pos} &= v_f \sin(\phi), \\ \dot{\phi} &= v_a \,. \end{split}$$

 x_{pos} ... pose x-coordinate y_{pos} ... pose y-coordinate ϕ ... pose angle v_f ... linear ("forward") velocity v_a ... angular velocity

• Samples are collected in the following form:

 $\mathbf{s}_k = (x_{pos,k}, y_{pos,k}, \phi_k, v_{f,k}, v_{a,k}, x_{pos,k+1}, y_{pos,k+1}, \phi_{k+1})$

Results – Simulated Mobile Robot

- 500 samples collected on a trajectory from a repetitive task with 20 % of random input
- Starting with only 5 training samples, adding 1 sample in each iteration
- 50 models generated in each iteration
- Comparison of all sample-selection methods
- Control task using reinforcement learning

Results – Real Mobile Robot

Results – Drone

- Modeling six state variables of the drone
- Buffer of ~1000 samples collected by teleoperating the real drone
- Starting with only 5 training samples, adding 1 sample in each iteration
- 10 models generated in each iteration

Model Learning with Sample Selection – Summary

- Selection of training samples is essential to efficiently construct accurate models from a large amount of data
- Informed methods clearly outperform the uninformed methods
- PERMIT and the variance method achieve the best performance
- Using the PERMIT method, an analytic model constructed by symbolic regression using 24 samples can be used to design a near-optimal RL controller for the real robot
- Future work
 - Training set maintenance, such as outlier detection and removal
 - Real-world long-term autonomy experiment to evaluate how the sample-selection method deals with unforeseen situations

Combining Data and Prior Knowledge – Motivation

 Models found using symbolic regression accurately fit the training data.

• Models may not comply with the physics of the robot (non-holonomic constraints, in this case).

Robot model found using baseline SR

28 March 2022

Prior Knowledge

- Prior knowledge captures important high-level characteristics of the system's physical laws without requiring in-depth knowledge of the physical model.
- It can be expressed as constraints on the model parameters or function values, data representing steady-state behavior of the system, velocity and acceleration trends under specific input, etc.
- Prior knowledge of the model's properties can be included in the model construction process as formal constraints or as a partial model.

Formal Constraints

- Desired model properties, such as monotonicity or symmetry, can be written as equality and inequality constraints.
- Extent to which the candidate models violate the constraints is calculated on synthetic, randomly sampled data.
- Multi-criteria optimization:
 - Error on the training data set
 - Constraint violation error

Prior Model

- Approximate or partial theoretical or empirical model of the robot is often known.
- This information can be included in the model structure as one or more prior features.
- Decomposing the prior model into several features allows to tune some of its inner parameters.
- Features evolved by genetic programming compensate for the prior features' deficiency.

 $f(\xi) =$

Experiments

- Two robotic benchmarks
 - Mobile robot TurtleBot 2
 - Drone Parrot Bebop 2
- Two scenarios
 - Baseline SNGP
 - SNGP with formal constraints
- SR parameters
 - Elementary function set = {+, -, ×, \cdot^2 , \cdot^3 , sin(\cdot), cos(\cdot)}
 - Maximum number of features = 10
 - Maximum tree depth = 7

Mobile Robot

• Continuous-time dynamics:

 $\dot{x}_{pos} = v_f \cos(\phi)$ $\dot{y}_{pos} = v_f \sin(\phi)$ $\dot{\phi} = v_a$

- $x_{pos} \dots$ pose x-coordinate
- $y_{pos} \dots$ pose y-coordinate
- ϕ ... pose angle
- v_f ... linear velocity
- $v_a \dots$ angular velocity

• The goal is to find continuous-time model fitting the measured data:

 $\hat{\dot{x}}_{pos} = f_{\dot{x}_{pos}}(x_{pos}, y_{pos}, \phi, v_f, v_a)$ $\hat{\dot{y}}_{pos} = f_{\dot{y}_{pos}}(x_{pos}, y_{pos}, \phi, v_f, v_a)$

- 87 discrete-time training samples ($T_s = 0.2$ s) of the form [x_k , u_k , x_{k+1}]
- State derivatives approximated using forward difference

Mobile Robot – Prior Knowledge

- Formal constraints for \dot{x}_{pos} :
 - Velocity along the x-axis is zero if the linear velocity v_f is zero.
 - Velocity along the *x*-axis is zero if the robot is moving in the positive or negative direction of the *y*-axis and it is not rotating at the same time.

Similarly, we define constraints for \dot{y}_{pos} .

• Theoretical models are used as prior features:

 $\dot{x}_{pos} = v_f \cos(\phi)$ $\dot{y}_{pos} = v_f \sin(\phi)$

• Bi-objective SNGP: Final model – lowest training RMSE among all models with the training constraint error less than 0.05

Mobile Robot – Example of Learned Model

Prior feature

$$\dot{x}_{pos} = v_f \cos(\phi)$$

$$\dot{y}_{pos} = v_f \sin(\phi)$$

Final model

$$\begin{aligned} \hat{x}_{pos} &= 8.5 \times 10^{-1} v_f \cos(\phi) - 1.2 \times 10^{-2} \sin(\sin(x_{pos})) \\ &+ 1.3 \times 10^{-2} \sin(x_{pos})^2 - 7.7 \times 10^{-3} \cos(\phi)^3 \\ &+ 3.7 \times 10^{-3} (\phi + v_a) + 2.8 \times 10^{-3} y_{pos} \cos(\phi + v_a) \\ &- 3.2 \times 10^{-3} (v_f + 2) (\sin(\sin(\phi)) - \cos(\phi)^3 \cos(x_{pos})) \\ &- 1.9 \times 10^{-3} (\phi + v_a)^2 + 1.8 \times 10^{-3} \cos(x_{pos}) (\phi - 3.1) \\ &+ 5.5 \times 10^{-4} y_{pos} - 4.8 \times 10^{-4} v_f - 3.1 \times 10^{-4} \end{aligned}$$

$$\begin{split} \hat{y}_{pos} &= 8.6 \times 10^{-1} v_f \sin(\phi) - 2.3 \times 10^{-1} \cos(1.4v_f) \\ &- 9.0 \times 10^{-2} v_f \sin(\cos(v_f^2)) - 8.3 \times 10^{-3} \cos(\phi - 2.8v_f)^4 \\ &+ 5.5 \times 10^{-3} (\phi + v_a) + 7.6 \times 10^{-4} x_{pos} - 1.6 \times 10^{-16} y_{pos}^{18} \\ &- 3.0 \times 10^{-3} \sin(x_{pos})^2 - 5.2 \times 10^{-3} \cos(v_a)^9 \\ &- 6.4 \times 10^{-4} (\phi - 2.8v_f)^2 (y_{pos} - \sin(x_{pos})) \\ &+ 6.1 \times 10^{-5} (y_{pos} - \sin(x_{pos}))^3 + 2.4 \times 10^{-1} \end{split}$$

Mobile Robot – Results

Drone

• Continuous-time dynamics:

$$\dot{v}_x = g\cos\psi\frac{\tan\theta}{\cos\phi} + g\sin\psi\tan\phi - k_D v_x$$

$$g = 9.81 \text{ m} \cdot \text{s}^{-1}$$
$$k_d = 0.28 \text{ s}$$

$$\dot{v}_y = g \sin \psi \frac{\tan \theta}{\cos \varphi} - g \cos \psi \tan \varphi - k_D v_y$$

 v_x, v_y, v_z ... translational velocities θ, φ, ψ ... body angles (pitch, roll, yaw)

- The goal is to find continuous-time model fitting the measured data: $\hat{v}_x = f_{\dot{v}_x}(v_x, \theta, \phi, \psi)$ $\hat{v}_y = f_{\dot{v}_y}(v_y, \theta, \phi, \psi)$
- 160 discrete-time training samples ($T_s = 0.05$ s) of the form [x_k , u_k , x_{k+1}]
- State derivatives approximated using forward difference

Drone – Prior Knowledge

- Formal constraints for \dot{v}_x (similarly defined also for \dot{v}_y):
 - Given a zero velocity along the x-axis, zero pitch, yaw orienting the drone in the positive or negative direction of the x-axis, and a non-zero roll, the acceleration in the direction of the x-axis has to be zero.
 - Analogously for zero roll and yaw orienting the drone along the y-axis
- Empirical models are used as prior features in two variants:

1 feature
1 feature

$$\dot{v}_x = g \cos \psi \frac{\tan \theta}{\cos \phi} + g \sin \psi \tan \phi - k_D v_x$$

 $\dot{v}_y = g \sin \psi \frac{\tan \theta}{\cos \phi} - g \cos \psi \tan \phi - k_D v_y$
 $\bar{f}_1 = g \cos \psi \tan \theta / \cos \phi$
 $\bar{g}_1 = g \sin \psi \tan \theta / \cos \phi$
 $\bar{g}_2 = -g \cos \psi \tan \phi$
 $\bar{g}_3 = -k_D v_x$
 $\bar{g}_3 = -k_D v_y$

Results Summary

Mobile robot

	Scenario	Prior feature	$\begin{array}{c} \text{Median } e_d^{\text{test}} \\ \left(\mathbf{m} \cdot \mathbf{s}^{-1} \right) \end{array}$
\hat{x}_{pos}	Baseline	Not included	5.920×10^{-3}
		Included	5.562×10^{-3}
Pos	Constrained	Not included	5.273×10^{-3}
		Included	4.973×10^{-3}
	Baseline	Not included	6.414×10^{-3}
$\hat{\dot{y}}_{nos}$		Included	5.455×10^{-3}
2 005	Constrained	Not included	6.492×10^{-3}
		Included	6.010×10^{-3}

- In 88 % prior model improves accuracy
- Statistically significant improvement ($p \ll 0.01$)
- In 3/4 cases 3 prior features are better than 1

Drone

	Scenario	Empirical model	Median e_d^{test} (m · s ⁻²)
\hat{v}_x	Baseline	Not included	7.508×10^{-1}
		1 prior feature	6.877×10^{-1}
		3 prior features	7.237×10^{-1}
	Constrained	Not included	1.153×10^{0}
		1 prior feature	2.245×10^{-1}
		3 prior features	1.980×10^{-1}
ŵy	Baseline	Not included	6.803×10^{-1}
		1 prior feature	8.536×10^{-1}
		3 prior features	8.260×10^{-1}
	Constrained	Not included	1.987×10^{-1}
		1 prior feature	1.727×10^{-1}
		3 prior features	1.639×10^{-1}

Symbolic Regression for Model Learning – Conclusions

- Symbolic regression allows to automatically construct analytic models of dynamic systems
- Such models can be easily plugged into other algorithms and facilitate further analysis
- If the data from a long-term continuous data stream are selected in an informed way, only a few samples are necessary to train a precise model of the robot's dynamics
- Model learning through symbolic regression is extended by including a prior (theoretical, empirical) model
- Including prior information to the model construction process yields accurate and physically plausible models that compensate for data deficiencies
- Experimental evaluation has shown that a model trained on only 24 samples can be used in a RL framework to perform the control task successfully

Future Work

- Symbolic regression methods in robotics
 - Direct tuning of the model accuracy-complexity tradeoff (progressive model construction and reduction)
 - Modeling value functions (V-functions) in RL using the proposed SR extensions (sample selection, prior knowledge)
- Data selection in long-term scenarios
 - Novel algorithm for sample selection with outlier detection (data loss, sensor faults)
 - Automated data set maintenance (removal of wrong data)
 - Real-world long-term autonomy experiment

Thank you for your attention!

http://people.ciirc.cvut.cz/derneeri

