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« Symbolic regression (SR) automatically finds

accurate analytic models fitting measured data 3.141592654 30 -23.34719731
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» Genetic operators (mutation) are applied to
tree-like structures representing the models to
evolve them, gradually improving their y
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« Informed sample selection improves efficiency: "
only 24 data samples needed to learn a model Zos|
allowing for accurate control of a mobile robot
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« Formal constraints allow for incorporating prior
knowledge about the physical system and 1
evolving accurate & physically meaningful o
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Symbolic Regression — Motivation

« Data modeling approaches
« Time-varying linear models

» Gaussian processes -3.141592654 -30 -23.34719731
. -2.932153143 -29 -22.67195916

Deep neural networks -2.722713633 -28 -22.07798667
 Local linear regression -2.513274123 -27 -21.63117778

-2.303834613 -26 -21.2992009

 Drawbacks - - )
« Large number of parameters N v
. INPUTS OUTPUT
« Local nature of the approximator
« Data-hungry
 Black box
« Symbolic regression
« Low number of parameters

« Small data sets
 Analytic expressions
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Symbolic Regression (SR)

» Fitting models in the form of mathematical expressions to a set of discrete
data points

« Model found by SR will be called analytic model in this talk

-3.141592654 -30 -23.34719731 f =-15.42978401 + 2.42980826 * ((x1 — (x1 *
-2.932153143 -29 -22.67195916 -1.49416733 + x2 * 0.51196778 + 0.00000756)) +
-2.722713633 -28 -22.07798667 (sgrt(power((x1 — (x1 * -1.49416733 + x2 *
-2.513274123 -27 -21.63117778 0.51196778 + 0.00000756)), 2) + 1) -1)/ 2) ...

-2.303834613 -26 -21.2992009
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Symbolic Regression Algorithms

©
nf 9’0

M = zajFJ(xl, , Xn) ® @ ©
“=0 ® @

 Finding models composed of several features (,trees")
« Multiple Regression Genetic Programming [1]
 Evolutionary Feature Synthesis [2]
« Multi-Gene Genetic Programming [3]
 Single Node Genetic Programming [4, 5]

[1] I. Arnaldo et al.: Multiple regression genetic programming (2014)

[2] I. Arnaldo et al.: Building predictive models via feature synthesis (2015)

[3] M. Hinchliffe et al.: Modelling chemical process systems using a multi-gene genetic programming algorithm (1996)
[4] D. Jackson: Single node genetic programming on problems with side effects (2012)

[5] J. Kubalik et al.: An improved Single Node Genetic Programming for symbolic regression (2015)
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Single Node Genetic Programming (SNGP)

« Graph-based GP technique

 Evolves a population organized as an ordered linear array of individuals,
each representing a single program node

Program node types
« Terminals — variables, constants
* Functions

Evolutionary process
« SMUT - successor mutation
« Acceptance rule — best fitness in the population has improved

1. 2 3 4 5 € ¢ & 8§ 1 1l
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_ identity
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Analytic Model Structure

n
M = Zjio aiFi(xqy, ..., Xn)
FO — 1
Linear combination of features

Coefficients a; can be calculated
e.g. by least squares

1. 2 8 94 ‘B 8 g 9 W 11

1 2 X1 X5 + = * / + = Il 12
_ identity

consts vars function nodes nodes

=

[6] J. Kubalik et al.: Hybrid single node genetic programming for symbolic regression (2016)
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Main SNGP Parameters

 Population size (e.g. 500 individuals)

Number of epochs (e.g. 30 epochs)

Epoch length (e.g. 1000 generations)

Tail function set (e.g. Plus, Minus, Multiply, Sine, Cosine)
Maximum number of features (e.g. 10 features)
Maximum depth of tree-like expressions (e.qg. 7 levels)
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Model Identification — Outline

« Symbolic regression (SR)
 Single Node Genetic Programming (SNGP)
» Multi-Gene Genetic Programming (MGGP)

 Constructing models of the system using SR

 State-space models
« Input—output models (NARX, nonlinear autoregressive with exogenous input)

 Control using SR models
« Reinforcement learning (RL) framework

 Data selection
« Identification of informative samples from a large set collected in a long-term scenario

e E. Derner, J. Kubalik, and R. Babuska. Data-driven Construction of Symbolic Process Models for Reinforcement Learning. In 2018 IEEE
, ICRA’ International Conference on Robotics and Automation (ICRA), 5105-5112, Brisbane, Australia.

E. Derner, J. Kubalik, and R. Babuska. Reinforcement Learning with Symbolic Input—Output Models. In 2018 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), 3004-3009, Madrid, Spain.
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Reinforcement Learning (RL)

Goals

Performance /
reward .
/ evaluation

state

/_\
Learning
controller

\/

action

Goal:
Learn a control strategy (policy) so that the sum of rewards over time is maximal.
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Reinforcement Learning (RL) — Theoretical Background

* Nonlinear model « Bellman equation (value function, V-function)
X1 = f (X, ) V*(x) = max {p (2, (x), £ (x,u)) +yV* (£ (=, u))]

* Xxi ... CUrrent state _ _
« Optimal action

* U ... current input , , /
* Xj41 ... NEXt state ol - [Pl f (e, 1)) + YV (f (x,0d))

¢ vy ... di nt f
« Reward function v .- discount factor

Pl = P(Xk U Xt 1)
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Model-Based RL Scheme

 Control loop and data logging in the

buffer run in real time l ——
» Symbolic regression and value —

iteration are computed offline in a

parallel process zs%z;f“;saaﬂi l_ T
« Sample-efficient methods to construct T

interpretable analytic model from data RL Controller (R gy, [B
 Application in self-learning control r

real-time loop

 Limited amount of data available
 Exploration is costly (safety, wear)
« Inclusion of prior knowledge
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Symbolic Regression for RL — State-Space Models

r N D
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Model-Based RL with Symbolic Regression — Motivation

« RL agent optimizes its behavior by
interacting with the environment

» The goal is to find an optimal policy [
maximizing the long-term cumulative =
Fewad I‘C| Value iteration — re}g/rrlés;cl)?l -

 RL can work in a completely .
model-free fashion e l_ Data buffer

- The absence of a model requires a lot Tu
of interaction with the system, which r R Comroler R et

Analytic model

is costly and many real systems
cannot withstand it

» To speed up learning, we propose to
use symbolic regression to find
process models of unknown systems
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Problem Statement

* SR is used to estimate the state-transition

time time

function of the system N-D INPUT 10 oUTRUT
. Given a set of training samples: Y o/
« Multidimensional inputs Lo B
« Known outputs CEEHGRP
. . . ®
« Genetic programming is used to form a -
GENETIC PROGRAMMING
model composed of features represented i
as trees

- User-defined parameters of SR MiAMA
« Functions used in the inner nodes of the

trees FITTED DATA
« Depth of the trees e b
 Number of features ANALYTIC MODEL
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Experiments

« Simulated experiments to evaluate the method
for different number of features and various
sizes of training sets

» Mobile robot
» Inverted pendulum

 Accurate analytic models can be found even for
small training sets

* Only tens of samples
» Generated using the Euler approximation of the
physical process model
 Real-world experiments
 Inverted pendulum lab setup

 Analytic process models used within a RL controller
to perform the swing-up task
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Mobile Robot — Illustrative Example

Continuous-time dynamics Xpos -+ POSe x-coordinate
Koy = Vi cos(d); Ypos +++ POSe y-coordinate
Ypos = V¢ sin(0), ¢ ... pose angle
q') — Vs ... linear (,forward") velocity
<

v, ... angular velocity

Discrete-time dynamics Example of an analytic model found by SR

Xpos,k+1 = Xpos,k +0.05vs g cos(9),  Xpos k+1 = 1.0xp05,k +0.0499998879 v £  cos(dx)

Ypos.k1 = Ypos.k +0.05v, k sin(0),  Fposkr1 = 1.000000023 y 05 x 4+ 0.0500000056 v £ 4 sin (0 )+
Or+1 =0k +0.05v, « . +0.0000000191

Or1 = 0.9999982931 ¢ +0.0500000536v,, —

Euler approximation — 0.0000059844
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Real Inverted Pendulum System

1 (K K’
0= % (Eu—mgl sin(o) —b oL — ?(x—csign(a)>

J = 1.7937 x 10~* kg m? @ ... angle [rad]

K =0.0536 NmA™* a ... angular velocity [rad s™*]
R=950Q ¢ ... angular acceleration [rad s~2]
m = 0.055 kg u ... voltage [V] - control input
g=9.81ms?

[ =0.042 m

b=194x10">Nmsrad™}
c=8.5%x10"*kgm? s?
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Real Inverted Pendulum Swing-Up

 Under-actuated swing-up task (limited voltage, cannot swing up at once)
 Training data were collected while applying random input to the system

10 | x | x T

Angle [rad]

Control input [V]
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Real Inverted Pendulum Swing-Up

« Only 5 seconds of the random interaction with a sampling period
T. = 0.05 s is sufficient to find an analytic process model that can
be used to perform the swing-up task successfully

- Data from several executions of the swing-up task were collected
and used together with the initial data set to train the refined
model, which shows even better performance

4 | | I I

---Desired angle (upright position)
----- Swing-up with initial model 7
—Swing-up with refined model

(\®]
[

Angle [rad]
)

1
NS

I
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Experiment — Pendulum Swing-Up

Control task: Make the underactuated inverted pendulum point up.

Collection of training data: random input

5
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Input—Output (NARX) Models

« Motivation: the whole state is often not measurable, needs to be approximated

y )/}\k‘l_l — f(yk7yk_17 e s 7yk_ny+17uk7uk_l7 e 7uk_nu+1)
J

\_Y_/ I\ J\_
Predicted Past Past
output outputs inputs
STATE-SPACE INPUT-OUTPUT
20 4
20_4 p 44 - ,
ay, [rad] ay, [rad]
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Experiment — Hopping Robot

Body: 15
KAX
X1 :—(L()—[> 1 m
myl =
KAy =05
Vi = —g+ ——(Lo—1
& g—l—’n][( 0 ) 0f mo
Spring length: 0s 0 05
z [m]
[ = \/Ax2 4+ Ay?
Foot:
. KAX L
Ay = = (Lo—1) — Eb)«g
KAy 1
Yo = —Pr Nlm—”———%b

mq,m, .. body and foot mass,
connected by a spring

K ... variable spring constant
g ... gravitational acceleration
Ly ... equilibrium spring length
[ ... actual spring length

b ... damping coefficient

Simplification of the problem statement:
x1,%X, = 0 ... x-coordinate is fixed

Control input u:
k=k'"+u
k' ... nominal spring constant
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Experiment — Hopping Robot
Control task: Keep the robot hopping.

1.2F
M K
£,
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> 1.2
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Model Learning with Sample Selection — Motivation

A robot collects a large amount of data during its long-term operation

« Only some data samples are informative

« The method iteratively adds samples, starting with a very small data set
 In every iteration, a set of models of the robot's dynamics is constructed

« The proposed sample selection method is based on the prediction error of the
models from the previous iteration "

0.9r
0.8+
0.7+
0.6
= 5l

04+

0.3+

0.2+

0.1}

..........

0
0 01 02 03 04 05 06 07 08 09 1

z [m]
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Model Learning with Sample Selection — Algorithm

© Input: sample-selection method, Buffer, TestSet, ng, ng, n;, n,
@i<0
© TrainingSet < S, (first ng samples in Buffer)
@ Buffer < Buffer \ Sy,
repeat
i <—i+1
for each state variable do
run n, instances of SR to construct models f,
f* <« f, with the lowest RMSE on TestSet
S <« ng samples from Buffer,
chosen by the sample-selection method
TrainingSet < TrainingSet U S
Buffer <— Buffer \ S
end for
until i = n; or termination condition on model quality is met
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Sample-Selection Methods

« Uninformed methods

« Sequential — new samples are added in the order in which they have been
stored to the buffer

« Random — new samples are selected from the buffer randomly

« Informed methods

« Maximum variance — a set of models is generated and the outputs of these
models are calculated for all buffer samples; the sample with the highest
variance in model output is added to the training set

« Maximum output domain coverage — new samples are added from the
buffer to cover the output domain as well as possible

« Maximum prediction error (PERMIT) — a set of models is generated and the
outputs of these models are calculated for all buffer samples; the sample
with the highest average error is added to the training set
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Experiments — Mobile Robot

» Continuous-time dynamics: Xpos --» POSe x-coordinate
Xpos = V§ c0s(0), Ypos .- POSe y-coordinate
Ypos = V¢ sin(9), ¢ ... pose angle
d=v,. Vs ... linear (,forward") velocity

v, ... angular velocity

« Samples are collected in the following form:

St = (XPOS,ka Ypos.k Gk, Vf ks Va.ks Xpos.k+1s Ypos.k+1 Gr+1)
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Median RMSE of z,,. on the test set
T T T T T T T

Results — Simulated Mobile Robot g —

» 500 samples collected on a trajectory from = =
a repetitive task with 20 % of random input U S S S S i |

+ Starting with only 5 training samples, adding -
1 sample in each iteration

« 50 models generated in each iteration

« Comparison of all sample-selection methods

 Control task using reinforcement learning

L PE e b
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Results — Real Mobile Robot

Median RMSE of z,,. on the test set
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Median RMSE of v, on the test set

Results — Drone i =

coverage
—— PERMIT

Median RMSE of # on the test set

s 1]

%
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RMSE 6 [rad)

* Modeling six state e L
variables of the drone .

« Buffer of ~1000
S a m pI e S C OI I e Ct e d by 1010 I Median R’MSE of v, on the test seii . 5
teleoperating the real
drone

» Starting with only N ‘@%\Q\\,ﬁv_«x/\g
5 training samples, A T s
adding 1 sample in
each iteration

s~
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Model Learning with Sample Selection — Summary

Selection of training samples is essential to efficiently construct accurate
models from a large amount of data

Informed methods clearly outperform the uninformed methods
PERMIT and the variance method achieve the best performance

Using the PERMIT method, an analytic model constructed by symbolic
regression using 24 samples can be used to design a near-optimal RL
controller for the real robot

Future work

 Training set maintenance, such as outlier detection and removal

» Real-world long-term autonomy experiment to evaluate how the
sample-selection method deals with unforeseen situations
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« Models found using symbolic
regression accurately fit the training
data.

« Models may not comply with the
physics of the robot (non-holonomic
constraints, in this case).

Robot model found using baseline SR
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Prior Knowledge

* Prior knowledge captures important high-level characteristics of the
system’s physical laws without requiring in-depth knowledge of the
physical model.

« It can be expressed as constraints on the model parameters or function

values, data representing steady-state behavior of the system, velocity
and acceleration trends under specific input, etc.

* Prior knowledge of the model’s properties can be included in the model
construction process as formal constraints or as a partial model.
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Formal Constraints

 Desired model properties, such as monotonicity or symmetry, can be
written as equality and inequality constraints.

« Extent to which the candidate models violate the constraints is
calculated on synthetic, randomly sampled data.

Error on the

e Multi-criteria Optimization: training data | e
 Error on the training data set o

e Constraint violation error S

Constraint violation error
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Prior Model

« Approximate or partial theoretical or empirical model of the robot is often
known.

 This information can be included in the model structure as one or more prior
features.

« Decomposing the prior model into several features allows to tune some of its
inner parameters.

« Features evolved by genetic programming compensate for the prior features’
deficiency.
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Experiments

« Two robotic benchmarks

« Mobile robot TurtleBot 2
« Drone Parrot Bebop 2

« Two scenarios
« Baseline SNGP
« SNGP with formal constraints
* SR parameters
 Elementary function set = {+, —, X, -2, -3, sin(:), cos(-)}
« Maximum number of features = 10
« Maximum tree depth = 7
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Mobile Robot

Continuous-time dynamics:  x,,s ... pose x-coordinate
Xpos = V§ c0s(0) Ypos --- POSE y-coordinate
Ypos = vy sin(9)

(b: Va

Yy pos-

¢ ... pose angle

Vr ... linear velocity

v, ... angular velocity

The goal is to find continuous-time model fitting the measured data:

Xpos = fxpos (XPOSJyp0S7 O, vy, Va)

Ypos = fy'pos (XPOSayp0S7¢7 Vf, Va)

« 87 discrete-time training samples (T, = 0.2 s) of the form [xj, uy, Xy 4+1]
« State derivatives approximated using forward difference
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Mobile Robot — Prior Knowledge

» Formal constraints for x,,,,:
- Velocity along the x-axis is zero if the linear velocity v, is zero.

 Velocity along the x-axis is zero if the robot is moving in the positive or
negative direction of the y-axis and it is not rotating at the same time.

Similarly, we define constraints for y,;.
« Theoretical models are used as prior features:
Xpos = vy c08(9)

..‘."pos — ¥ Sln(q))

 Bi-objective SNGP: Final model — lowest training RMSE among all
models with the training constraint error less than 0.05
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Mobile Robot — Example of Learned Model

Prior feature Final model

f'pos = R lO‘lvfcos(q)) —19%1072 sin(sin(xpos) )
+1.3x 10—2Sin(.\-p05)2 — 7.7 x 10‘3cos(¢))3
+3.7 x 1073(0 +va) +2.8 x 103 ypo5 cos($+ va)
—3.2x 10“3(\-’f +2)(sin(sin(¢)) — cos(¢)? cos(Xpos))
—1.9x 10739 +v4)? + 1.8 x 1073 cos(xpos) (¢ — 3.1)
+5.5x1074ypps — 4.8 x 1074vs —3.1 x 1074

Xpos = Vf cos(9)

Fpos = 8.6 x 10~ 'vzsin(¢) — 2.3 x 10~ cos(1.4vy)
—9.0 x 10_2\7 sin(cos(v})) —83%1072 cos(¢ — 2.8vf)4
+5.5 % 1072 (@+va) +7.6 x 10 *xpps — 1.6 x 10716y 5
—3.0 x 1073 sin(xpps)? — 5.2 x 103 cos(v,)°
—6.4 % 107*( — 2.8v/) (¥ pos — Sin(Xpos))
+6.1 x 1073 (ypos — sin(xXpos))> +2.4 x 107!

ypos — WF Sll’l(q))
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Mobile Robot — Results

Mobile robot — a?;zm — baseline SNGP i3 Mobile robot — ;i';,,(,s — SNGP with formal constraints
0.02 - :
= = -models learned without prior feature = = .models learned without prior feature
|====models learned with prior feature = models learned with prior feature
.........prior feature ---------prior feature
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—~0.015} —0.015 -
o Ty
Z.. 0.01 ;’_/ L
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1 1 1 I 1 I 1 I I ] o { | l | | i | | 1 i
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Drone

Continuous-time dynamics:

, . tan 6 Gt
Yy = gsIn : cos \ytan kpv
y = gsmy SO geosytan@ — Kkpvy

ﬁx = fo (VX7 97({)7\'!)
Vy — f\?y(vya 67 (P71|I)

7

g=981m-s1 - pe
Z Y, Oq) j

ky = 0.28s

Uy, Uy, Uy ... translational velocities

8, , Y ... body angles (pitch, roll, yaw)

The goal is to find continuous-time model fitting the measured data:

160 discrete-time training samples (T, = 0.05 s) of the form [x;, uy, X;+1]
State derivatives approximated using forward difference

Erik Derner: Data-Efficient Methods for Model Learning and Control in Robotics

28 March 2022



Drone — Prior Knowledge

» Formal constraints for v, (similarly defined also for v,):

 Given a zero velocity along the x-axis, zero pitch, yaw orienting the
drone in the positive or negative direction of the x-axis, and a non-zero
roll, the acceleration in the direction of the x-axis has to be zero.

 Analogously for zero roll and yaw orienting the drone along the y-axis
« Empirical models are used as prior features in two variants:

1 feature Vy = ZCOS S +gsinytan® — kpv iy t k
u x = §CO¢ wcoscp gsmytanQ — kpvy Vy = gsm\uCOS(P —gcosytan@Q — kpvy
fi = gcosytan0/cos @ g) = gsinytan0/cos @
3 features f>» =gsinytan@ 2> = —gcosytan @

f3 = —kpvx g3 = —kpvy
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Results Summary

Drone

Median ef}“‘

Mobile robot
g o SESE
Scenario | Prior feature  Mcdian €
w5
: Not included  5.920 x 1073
Baseline %
Xpos Included  5.562 % 10—
: Not included  5.273 x 103
Constrained
Included 4973 x 107
, Not included  6.414 x 10~
Baseline :
Ypos Included ~ 5.455x 10
, Not included  6.492 x 1073
Constrained
Included 6.010 x 103

« In 88 % prior model improves accuracy
« Statistically significant improvement (p « 0.01)
« In 3/4 cases 3 prior features are better than 1

Scenario Empirical model
-5
Not included 7.508 x 10~
Baseline | prior feature  6.877 x 10!
Dy 3 prior features  7.237 x 10!
Not included 1453 x10°
Constrained | | prior feature ~ 2.245 x 10!
3 prior features  1.980 x 10~
Not included ~ 6.803 x 10!
Baseline | prior feature  8.536 x 10!
Vy 3 prior features  8.260 x 10!
Not included 1.987 x 10!
Constrained | | prior feature  1.727 x 107!
3 prior features  1.639 x 10~
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Symbolic Regression for Model Learning — Conclusions

« Symbolic regression allows to automatically construct analytic models of
dynamic systems

« Such models can be easily plugged into other algorithms and facilitate further
analysis

« If the data from a long-term continuous data stream are selected in an
informed way, only a few samples are necessary to train a precise model of
the robot's dynamics

« Model learning through symbolic regression is extended by including a prior
(theoretical, empirical) model

« Including prior information to the model construction process yields accurate
and physically plausible models that compensate for data deficiencies

« Experimental evaluation has shown that a model trained on only 24 samples
can be used in a RL framework to perform the control task successfully
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Future Work

« Symbolic regression methods in robotics
« Direct tuning of the model accuracy-complexity tradeoff (progressive model

construction and reduction)
« Modeling value functions (V-functions) in RL using the proposed SR extensions

(sample selection, prior knowledge)

 Data selection in long-term scenarios
« Novel algorithm for sample selection with outlier detection (data loss, sensor

faults)
« Automated data set maintenance (removal of wrong data)

« Real-world long-term autonomy experiment

28 March 2022
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Thank you for your attention!

http://people.ciirc.cvut.cz/derneeri
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