
TextText

Minimizing the weighted number of tardy jobs
on a single machine: Strongly correlated

instances

Přemysl Šůcha, Lukáš Hejl, Antonín Novák, Zdeněk Hanzálek Czech
Technical University in Prague

Czech Institute of Informatics, Robotics and Cybernetics

2

▪ Domain:
▪ optimization of processes
▪ scheduling related to production, health care, embedded

systems, human resources, …
▪ robust optimization, energy consumption optimization
▪ data-driven algorithms, ML for combinatorial problems

▪ Group is financed from projects (FP6/FP7, H2020, US Navy, …)
 and cooperation with industry

▪ Partners:

Czech Technical University in Prague/CIIRC – Optimization group

1|dj˜|∑Uj
▪the problem is given by a set of n jobs N={1,…,n}

▪each job j ∈ N is defined using four non-negative integer parameters:

▪ processing time pj,

▪ weight wj,

▪ due date dj, and

▪ deadline dj˜, dj ≤ dj˜

▪a solution is a schedule - assignment of the jobs to the start times (no overlap, no
preemption)

▪the goal is to find a schedule minimizing ∑wjUj (Uj=1 if the job is tardy, and Uj=0 otherwise).

▪in Graham’s scheduling notation, the problem is denoted as 1|dj˜|∑wjUj

▪The problem is known to be NP-hard by Lawler (1983).

j

tdj dj˜

pj

▪Example with 3 jobs, i.e., N={1,2,3}:

(a) shortest processing time first - ∑wjUj = 12⋅0 + 9⋅0 + 89⋅1 = 89

(a) optimal - ∑wjUj = 12⋅1 + 9⋅0 + 89⋅0 = 12

1|dj˜|∑wjUj - example
Job j 1 2 3
pj 11 9 90

wj 12 9 89

dj 100 100 100

dj~ 120 120 120

1

t50 100

32

0

1

t50 100

32

0

1|dj˜|∑wjUj - literature
▪1||∑wjUj is NP-hard even if all jobs have a common due date (Karp, 1972)

▪1|dj˜|∑wjUj remains NP-hard even if ∀j wj = 1 (Lawler, 1983)

▪Sahni (1976) propose dynamic programming-based algorithms with
pseudopolynomial time complexity

▪Villarreal & Bulfin (1983) published a branch-and-bound algorithms (instances
having up to 50 jobs)

▪Tang (1990) introduces a new job’s dominance (85 jobs)

▪Potts and Van Wassenhove (1988) used an efficient lower bound (1 000 jobs)

▪Knapsack problem was used by M’Hallah and Bulfin (2003) to compute a lower
bound (2 500 jobs)

1|dj˜|∑wjUj - literature
▪Baptiste et al. (2010) proposed a very efficient branch-and-bound method (30
000 jobs), nevertheless only 200 jobs in the case of correlated instances (wj = pj
+ C)

▪Potts and Van Wassenhove (1988) have shown that certain classes of
instances of 1||∑wjUj and 1|dj˜|∑wjUj are significantly harder to solve

▪The same phenomenon was observed with strongly correlated instance of
Knapsack Problem (Martello & Toth, 1990; Pisinger, 2005)

Outline
▪SotA algorithm by Baptiste et al. (2010)

▪the hardest instances

▪improved algorithm

▪experimental results

▪conclusions

Algorithm by Baptiste et al. (2010) - properties
▪ Dominance Theorem (Baptiste et al. (2010)). Let pi ≤ pj, di ≥ dj, di˜ ≤ dj˜ and

wi ≥ wj, and at least one inequality is strict. Then

▪ if job i is tardy, then job j must be tardy too,

▪ if job j is early, then job i must be early too.

▪ Reduction Theorem: (Baptiste et al. (2010)). There exists a feasible
schedule with early set E if and only if there exists a feasible schedule with
early set E = E \ {i} for the reduced problem.

Algorithm by Baptiste et al. (2010) - ILP
▪the algorithm exploits an ILP formulation

▪binary variable xi equals to one if i ∈ E and zero otherwise

▪the objective maximizes the weighted number of early jobs (≈
min ∑wjUj)

▪the constraint defines two sets:

▪ jobs that must be completed before t : At = {i ∈ N : di˜ ≤

t}

▪ jobs that will be early if they are scheduled before t : Bt

= {i ∈ N : di ≤ t ∧ di˜ > t}

Algorithm by Baptiste et al. (2010)
▪The algorithm is a branch and bound, deciding if a job is early or tardy
(reduces 1|dj˜ | ∑wjUj to 1|dj˜ = Dj|- which is polynomial)

▪Each node of the branch-and-bound tree is processed as follows:
1. (Upper bound z¯): the algorithm solves the problem relaxation,
2. (Lower bound z): the heuristic computing to a feasible solution
3. (Fixing of decisions): variable fixing techniques deciding is a job is

early or tardy,
4. (Branching): the algorithm selects job i and recursively branches

with i ∈ E and i ∈ N \ E (finished by ILP)

Algorithm by Baptiste et al. (2010) – upper bound
▪LP relaxation of the ILP model is too large to fit into memory

▪the algorithm transforms the LP relaxation into maximum profit flow
problem (solved by dual ascent method)

▪There are two types of nodes: jobs and time

▪memory complexity is O(n) compared to O(n2)

▪the objective is used for solution pruning

t1 t2 t3 t4

1 2

d1 d2 d1~ d2~

p1,
w1/p1

p1,
0 p2,

w2/p2

p2,
0

p1 p2

t1,
0

t2,
0

t3,
0

t4,
0

capacity
profit

Algorithm by Baptiste et al. (2010) - lower bound
▪the lower bound is computed by a heuristic

▪the algorithm:
1. use the solution obtained by solving the relaxed problem (y),
2. based on y fix decisions of some jobs using the reduction theorem,
3. the remining jobs are decided by the ILP,
4. the resulting solution is improved by a local search (difference is 2)

Algorithm by Baptiste et al. (2010)
▪variable fixing

▪ performs job fixing (i ∈ E or i ∈ N \ E)

▪ uses variable-fixing techniques from Integer Linear Programming

▪Method exploits the lower and upper bounds and reduced cost of
variables

▪Branching

▪ depth-first search branch and bound

▪ branching on the fractional variable having largest max–min pseudo-cost

▪ if the reduced problem allows to build an instance of the ILP with no more
than 1.4 · 107 nonzeros, the rest is solved by the ILP solver

1|dj˜|∑wjUj – correlated instances
▪Potts and Van Wassenhove (1988) defined three classes of
instances regarding the relationship between wj and pj as:

▪ strongly correlated (wj = pj + C, where C is often 20),

▪weakly correlated (wj is drawn from the uniform distribution wj ∼[pj, pj + C],

▪ uncorrelated (do not have any specific relation between pj and wj)

▪Algorithm by Baptiste et al. (2010) cannot solve some instances with 250 jobs of
strongly correlated instances (all for 30 000 jobs of uncorrelated ones)

▪Note that for strongly correlated instances the condition in the dominance
theorem reduces to “pi = pj, di ≥ dj, di˜≤ dj˜ and wi = wj” – harder to fulfill

Improved algorithm - Motivation
▪the limiting factor for solving uncorrelated and correlated instances in the
algorithm Baptiste et al. (2010) is not the same:

▪ uncorrelated instances

▪ the limiting factor is the memory limit (quadratic size of ILP)

▪ correlated instances

▪ the CPU time of the algorithm grows much faster (job’s dominance
property)

▪ variable-fixing technique is less efficient (four times more jobs
without decision)

▪we propose three improvements of the algorithm

Improved algorithm - ILP
▪The improved ILP reformulates the objective function for correlated instances and introduces
variable e = |E|

▪ILP is decomposed to subproblems according to e

▪a sub-problem can be seen as an instance where wi = pi (the condition in Theorem 1 reduces

to pi =pj, di ≥ dj and di˜≤ dj˜

▪moreover, it is not needed to assume all e

▪the lower bound of e is obtained by solving
 1|dj˜, wj

’ = pj |∑wjUj

▪the upper bound of e is obtained by solving
 1|dj˜|∑Uj

Improved algorithm - Lower bound
▪Both bounds are used in the variable fixing technique – the tighter bounds
the smaller N

▪we proposed main three improvements:

▪ use of decomposed ILP model

▪ reversed condition for defining which jobs will be solved by ILP

▪we do not use the additional local search

▪The modified condition increased the number of jobs solved by ILP (13%) –
compensated by leaving out the additional local search

Improved algorithm - Upper bound
▪the upper bound proposed in Baptiste et al. (2010) is already very tight

▪we tighten up the obtained upper bound by branching on a selected job:

▪ branching on a job being early/tardy

▪ branching on a partially scheduled job with minimal dj

▪ simple rule

▪ significant impact on the objective

▪ branching is repeated up to a small fixed depth (take the worst one)

▪The tighter lower and upper bounds we provide to the variable fixing technique,
the fewer nodes it is necessary to explore

Experimental results – original ILP vs. our ILP

*) Gurobi 8.1.1 ILP solver (limited to single core) on an Intel Xeon E5-2690 v4 CPUs with 512 GB RAM

**) 200 randomly generated instances per n

Experimental results
▪B&B

Conclusions
▪the work studies problem 1|dj˜|∑wjUj on the hardest problem instances

▪the main idea is the decomposed ILP method + few simple improvements

▪The SotA algorithm cannot solve all instances with 250 jobs (within an hour)

▪our approach can solve all instances with 5 000 jobs

▪an improvement can be observed on weakly and uncorrelated instances

▪our original aim was to use ML to improve the algorithm – size is probably too
large

Lukáš Hejl, Přemysl Šůcha, Antonín Novák, Zdeněk Hanzálek, Minimizing the weighted number of tardy jobs on a
single machine: Strongly correlated instances, European Journal of Operational Research, Volume 298, Issue 2, Pages
413-424, 2022.

