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▪ Domain: 
▪ optimization of processes 
▪ scheduling related to production, health care, embedded 

systems, human resources, … 
▪ robust optimization, energy consumption optimization 
▪ data-driven algorithms, ML for combinatorial problems 

▪ Group is financed from projects (FP6/FP7, H2020, US Navy, …) 
        and cooperation with industry 

▪ Partners:

Czech Technical University in Prague/CIIRC – Optimization group



1|dj˜|∑Uj
▪the problem is given by a set of n jobs N={1,…,n} 

▪each job j ∈ N is defined using four non-negative integer parameters:  

▪ processing time pj, 

▪ weight wj, 

▪ due date dj, and 

▪ deadline dj˜, dj ≤ dj˜ 

▪a solution is a schedule - assignment of the jobs to the start times (no overlap, no 
preemption) 

▪the goal is to find a schedule minimizing ∑wjUj (Uj=1 if the job is tardy, and Uj=0 otherwise). 

▪in Graham’s scheduling notation, the problem is denoted as 1|dj˜|∑wjUj 

▪The problem is known to be NP-hard by Lawler (1983).
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▪Example with 3 jobs, i.e., N={1,2,3}: 

(a) shortest processing time first - ∑wjUj = 12⋅0 + 9⋅0 + 89⋅1 = 89  

(a) optimal - ∑wjUj = 12⋅1 + 9⋅0 + 89⋅0 = 12 

1|dj˜|∑wjUj - example
Job j 1 2 3
pj 11 9 90

wj 12 9 89

dj 100 100 100

dj~ 120 120 120
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32
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1|dj˜|∑wjUj - literature
▪1||∑wjUj is NP-hard even if all jobs have a common due date (Karp, 1972) 

▪1|dj˜|∑wjUj remains NP-hard even if ∀j wj = 1 (Lawler, 1983) 

▪Sahni (1976) propose dynamic programming-based algorithms with 
pseudopolynomial time complexity 

▪Villarreal & Bulfin (1983) published a branch-and-bound algorithms (instances 
having up to 50 jobs) 

▪Tang (1990) introduces a new job’s dominance (85 jobs) 

▪Potts and Van Wassenhove (1988) used an efficient lower bound (1 000 jobs) 

▪Knapsack problem was used by M’Hallah and Bulfin (2003) to compute a lower 
bound (2 500 jobs)



1|dj˜|∑wjUj - literature
▪Baptiste et al. (2010) proposed a very efficient branch-and-bound method (30 
000 jobs), nevertheless only 200 jobs in the case of correlated instances (wj = pj 
+ C) 

▪Potts and Van Wassenhove (1988) have shown that certain classes of 
instances of 1||∑wjUj and 1|dj˜|∑wjUj are significantly harder to solve 

▪The same phenomenon was observed with strongly correlated instance of 
Knapsack Problem (Martello & Toth, 1990; Pisinger, 2005)



Outline
▪SotA algorithm by Baptiste et al. (2010) 
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▪improved algorithm 
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Algorithm by Baptiste et al. (2010) - properties
▪ Dominance Theorem (Baptiste et al. (2010)). Let pi ≤ pj, di ≥ dj, di˜ ≤ dj˜ and 

wi ≥ wj, and at least one inequality is strict. Then 

▪ if job i is tardy, then job j must be tardy too, 

▪ if job j is early, then job i must be early too. 

▪ Reduction Theorem: (Baptiste et al. (2010)). There exists a feasible 
schedule with early set E if and only if there exists a feasible schedule with 
early set E = E \ {i} for the reduced problem.  



Algorithm by Baptiste et al. (2010) - ILP
▪the algorithm exploits an ILP formulation 

▪binary variable xi equals to one if i ∈ E and zero otherwise 

▪the objective maximizes the weighted number of early jobs (≈ 
min ∑wjUj) 

▪the constraint defines two sets: 

▪ jobs that must be completed before t : At = {i ∈ N : di˜ ≤ 

t} 

▪ jobs that will be early if they are scheduled before t : Bt 

= {i ∈ N : di ≤ t ∧ di˜ > t}  

 
  



Algorithm by Baptiste et al. (2010)
▪The algorithm is a branch and bound, deciding if a job is early or tardy 
(reduces 1|dj˜ | ∑wjUj to 1|dj˜ = Dj|- which is polynomial) 

▪Each node of the branch-and-bound tree is processed as follows: 
1. (Upper bound z¯): the algorithm solves the problem relaxation, 
2. (Lower bound z): the heuristic computing to a feasible solution 
3. (Fixing of decisions): variable fixing techniques deciding is a job is 

early or tardy, 
4. (Branching): the algorithm selects job i and recursively branches 

with i ∈ E and i ∈ N \ E (finished by ILP) 



Algorithm by Baptiste et al. (2010) – upper bound
▪LP relaxation of the ILP model is too large to fit into memory 

▪the algorithm transforms the LP relaxation into maximum profit flow 
problem (solved by dual ascent method) 

▪There are two types of nodes: jobs and time 

▪memory complexity is O(n) compared to O(n2) 

▪the objective is used for solution pruning

t1 t2 t3 t4

1 2

d1              d2                d1~           d2~

p1, 
w1/p1

p1, 
0 p2, 

w2/p2

p2, 
0

p1 p2

t1, 
0

t2, 
0

t3, 
0

t4, 
0

capacity
profit



Algorithm by Baptiste et al. (2010) - lower bound
▪the lower bound is computed by a heuristic 

▪the algorithm: 
1. use the solution obtained by solving the relaxed problem (y), 
2. based on y fix decisions of some jobs using the reduction theorem, 
3. the remining jobs are decided by the ILP, 
4. the resulting solution is improved by a local search (difference is 2)



Algorithm by Baptiste et al. (2010)
▪variable fixing 

▪ performs job fixing (i ∈ E or i ∈ N \ E ) 

▪ uses variable-fixing techniques from Integer Linear Programming 

▪Method exploits the lower and upper bounds and reduced cost of 
variables 

▪Branching 

▪ depth-first search branch and bound 

▪ branching on the fractional variable having largest max–min pseudo-cost 

▪ if the reduced problem allows to build an instance of the ILP with no more 
than 1.4 · 107 nonzeros, the rest is solved by the ILP solver



1|dj˜|∑wjUj – correlated instances
▪Potts and Van Wassenhove (1988) defined three classes of 
instances regarding the relationship between wj and pj as: 

▪ strongly correlated (wj = pj + C, where C is often 20), 

▪weakly correlated (wj is drawn from the uniform distribution wj ∼[pj, pj + C], 

▪ uncorrelated (do not have any specific relation between pj and wj) 

▪Algorithm by Baptiste et al. (2010) cannot solve some instances with 250 jobs of 
strongly correlated instances (all for 30 000 jobs of uncorrelated ones) 

▪Note that for strongly correlated instances the condition in the dominance 
theorem reduces to “pi = pj, di ≥ dj, di˜≤ dj˜ and wi = wj” – harder to fulfill 



Improved algorithm - Motivation
▪the limiting factor for solving uncorrelated and correlated instances in the 
algorithm Baptiste et al. (2010) is not the same: 

▪ uncorrelated instances 

▪ the limiting factor is the memory limit (quadratic size of ILP) 

▪ correlated instances 

▪ the CPU time of the algorithm grows much faster (job’s dominance 
property) 

▪ variable-fixing technique is less efficient (four times more jobs 
without decision) 

▪we propose three improvements of the algorithm



Improved algorithm - ILP
▪The improved ILP reformulates the objective function for correlated instances and introduces 
variable e = |E| 

▪ILP is decomposed to subproblems according to e 

▪a sub-problem can be seen as an instance where wi = pi  (the condition in Theorem 1 reduces 

to pi =pj, di ≥ dj and di˜≤ dj˜ 

▪moreover, it is not needed to assume all e 

▪the lower bound of e is obtained by solving 
   1|dj˜, wj

’ = pj |∑wjUj 

▪the upper bound of e is obtained by solving 
   1|dj˜|∑Uj 



Improved algorithm - Lower bound
▪Both bounds are used in the variable fixing technique – the tighter bounds 
the smaller N 

▪we proposed main three improvements: 

▪ use of decomposed ILP model 

▪ reversed condition for defining which jobs will be solved by ILP 

▪we do not use the additional local search 

▪The modified condition increased the number of jobs solved by ILP (13%) – 
compensated by leaving out the additional local search  



Improved algorithm - Upper bound
▪the upper bound proposed in Baptiste et al. (2010) is already very tight 

▪we tighten up the obtained upper bound by branching on a selected job: 

▪ branching on a job being early/tardy 

▪ branching on a partially scheduled job with minimal dj 

▪ simple rule 

▪ significant impact on the objective 

▪ branching is repeated up to a small fixed depth (take the worst one) 

▪The tighter lower and upper bounds we provide to the variable fixing technique, 
the fewer nodes it is necessary to explore 



Experimental results – original ILP vs. our ILP

*) Gurobi 8.1.1 ILP solver (limited to single core) on an Intel Xeon E5-2690 v4 CPUs with 512 GB RAM 

**) 200 randomly generated instances per n  
  



Experimental results
▪B&B



Conclusions
▪the work studies problem 1|dj˜|∑wjUj on the hardest problem instances 

▪the main idea is the decomposed ILP method + few simple improvements 

▪The SotA algorithm cannot solve all instances with 250 jobs (within an hour) 

▪our approach can solve all instances with 5 000 jobs 

▪an improvement can be observed on weakly and uncorrelated instances 

▪our original aim was to use ML to improve the algorithm – size is probably too 
large 
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